
Source of Acquisition
NASA Ames Research Centa

Annotation Inference for the Safety Certification
of AutomaticaIIy Generated Code

Ewen Denney
USltA/RTACS, NASA Arnes

edenney@email.arc.nasa.gov

Abstract

Code generators for realistic application domains are
not directly verifiable in practice. Certifiable code gen-
eration is an alternative approach, where the the genera-
tor is extended to generate logical annotations (i.e-, pre-
and postconditions and loop invariants) along with the pro-
grams, allowing &fly automated program safety proofs.
Howevel; it is discult to implement and maintain because
it requires access to the generator sources, and because the
annotations are cross-cutting concerns, both on the object-
level (i.e-, in the generated code) and on the meta-level (i.e.,
in the generator).

We describe a generic post-generation annotation infer-
ence algorithm to circumvent these problems. It exploits the
fact that the output o fa code generator is highly idiomatic,
so that pattems can be used to describe all code constructs
that require annotations, in a way which is largely indepen-
dent of the code generatof The algorithm then uses tech-
niques similar to aspect-oriented programming to add the
annotations to the generated code. The generic algorithm
is implemented and instantiated for two generators; the in-
stantiations are applied successfilly tu fully automatically
certify initialization safety for the generated programs.

Automated code generation is an enabling technology
for model-based software development and has significant
potential to improve the entire software development pro-
cess. It promises many benefits, including higherproduc-
tivity, reduced turn-around times, increased portability, and
elimination of manual coding errors. However, the key to
realizing these benefits is of course generator correctness-
nothing is gained from replacing manual coding errors with
automatic coding errors.

Several ideas have been explored to ensure generator
correctness, but none has been entirely successful yet.

-__ . _ _ __- .- _. .

Bernd Fischer
ECS: University of Southampton

B.Fischer@ecs.soton.ac.uk

Approaches based on ‘korrect-by-construction” techniques
like deductive synthesis [23] or refinement [22] remain dif-
ficult to implement and to scale up, and have not found
widespread application. The direct verification of genera-
tors is still a challenge for existing Verification techniques
and remains similarly elusive. UsualIy, generators are thus
validated by testing only, but this quickly becomes exces-
sive and cannot guarantee the same level of assurance.

Our work follows an alternative approach that is based
on the observation that the correctness of the generator is ir-
relevant if instead the correctness of the generated programs
is shown individually. However, rather than showing full
correctness of the generated programs as envisioned for a
verifying compiler [151, we follow the more pragmatic cer-
tifying compiler [19] used in the proof carrying code (PGC)
approach and focus on the Hoare-style certification of spe-
cific safety properties.

Still, this leaves us with the task to construct the appro-
priate logical annotations (i.e., pre- and postconditions and
Ioop invariants), due to their central role in Hoare-style cer-
tification. In previous work [5, 6, 7, 8, 251 we have thus
developed and evaluated an approach to certifiable program
generation in which the code generator itself is extended in
such a way that it produces all necessary annotations togeth-
er with the code. This is achieved by embedding annotation
templates into the code templates, which are then instanti-
at&ani refim83qmdIel-by the-genixaror: -

We have successfully used this approach to certify a va-
riety of safety properties for code generated by the AUTO-
BAYES [111 and AUTOFILTER [26] systems. However, it
has two major disadvantages. First, it is difficult to im-
plement and to maintain: the developers first need to an-
alyze the generated code in order to identify the location
and structure of the required annotations, then identify the
templates that .- produce - - the respective code fragments, and
finally formulate and integrate appropriate annotation tem-
plates. This is compounded by the fact that annotations
are cross-cutting concerns, both on the object-level @e., the
generated program) and the meta-level (i.e., the generator).
Second, it requires access to the existingsourcesr the devel-

1

opers need to modify the code generator in order to integrate
the annotation generation. However, sources are often not
accessible, in particular for commercial generators.

In this paper we describe an alternative approach that us-
es a generic post-generation annotation inference algorithm
to circumvent these problems. It is based on three funda-
mental insights: (i) the problem of certifying code can be
split into two phases: an untrusted annotation generation
where the creative insights are made, and a simpler trust-
ed phase where verification conditims are generated aad
proven (ii) although “eureka” insights are required in gen-
eral, in practice they are rarely required because certain
common cases typically arise, and (iii) code patterns can
be used to descnbT&ese cases.

The algorithm can run completely separately from the
code generator because it uses teclhnicjues s i idar to aspect-
oriented programming to add the annotations to the gener-
ated code: the patterns correspond to (static) point-cut de-
scriptors, while the introduced annotations coEespond to
advice. It thus concentrates annotation generation in one
location but, even more importantly, leaves the generator
unchanged by exploiting the idiomatic strucmre of automat-
ically generated code (Le., the fact that it only constitutes a
limited subset of all possible programs).

The main contribution of this paper is a general approach
to extending code generators with a certification capability,
which has been validated on two code generators. We build
on previous work on certifiable code generation to develop
a generic certification system for code generators. Howev-
er, our focus in this paper is on the annotation inference,
rather than the subsequent generation and proof of verifica-
tion conditions.

2 Background

- 1. momatic Cocie Automatic code generators derive
lower-level code from higher-level, declarative specifica-
tions. Approaches range from deductive synthesis [23] to
template me@-progr&ng [4] but for our purposes nei-
th57 thT speC?fiE amE?%icli iim &e spicZficaatm Imgwge
matter, and we build on a template-based approach. What
does matter, however, is the fact that an automatic code gen-
erator usually generates highly idiomatic code. Intuitively,
idiomatic code exhibits some regular structure beyond the
syntax of the programming language and uses similar con-
structions for similar problems. Manually written code al-
ready tends to be idiomatic, but the applied idioms vary with
the programmer. - _ _ Automatic generators eliminate this vari-
ability because they essentialiy derive code by combhhg
a finite number of building blocks-in our case, templates.
For example, AUTOFILTER only uses three tempiates to hi-
tialize a matrix, resulting in either straight-line code or one
of two doubly-nested loop versions (cf. Figure 1)

A [1 , 1 I : = u l , l ; f o r i : = l t o n d o f o r i : = I t o n d o
... f o r j : = l t o m d o f o r j : = 1 i o m d o
A[l ,m]:=al , , ; B [i , j] : = b ; i f i=j then
A [2 , 1] :=az, l ; C [i , j l := c
... else
A [n, m] : = ; ~ [i , j] := c’;

Figure 1. Idiomatic matrix initializations

The idioms are essential to our approach because they
(rather than the templates) determine the interface between
the code generator and the inference algorithm. Note that

templates that produced the code, which allows us to apply
our technique to black-box generators as well. However,
identifying and formalizing the necessary idioms remains a
manual step in the process.

Safety Certification The purpose of safety certification
is to demonstrate that a program does not violate certain
conditions duiing its execation. A safety property is an ex-
act characterization of these conditions based on the opera-
tional semantics of the lmguage. A safety policy is a set of
Hoare rules designed to show that safe programs satisfy the
safety property of interest. The rules can be formalized us-
ing the usual Hoare triples P { c } Q, i.e., if the condition P
holds before and the command e terminates, then Q holds
afterwards (see [181 for more information about Hoare-style
program proofs).

For each notion of safety the appropriate safety proper-
ty and corresponding policy must be formulated. This is
usually straightforward; in particular, a safety policy can be
constructed systematically by instantiating a generic rule set
that is derived from the standard rules of the Hoare calculus
[5]. The basic idea is to extend the standard environment of
progrm variables with a “shadow” envirocxient of safety
variables which record safety information related to the cor-
responding program variables. The rules are then responsi-
ble for maintaining this environment and producing the ap-
propriate safety obligations. This is done-using a family- of
safety substitutions that are added to the normal substitu-
tions, and a family of safety predicates that are added to the
calculated weakest preconditions (WPCs). Safety certifica-
tion then starts with the postcondition true and computes the
weakest safety precondition (WSPC), i.e., the WF’C togeth-
er with all appiied safety predicates and safety substitutions.
Lf the program is safe then the WSPC will be provable with-
out any assumptions, i.e., true {.> true is derivable.

mented the corresponding safety policies in AUTOBAYES
and AUTOi?iLTER. Here, we focus on &e iniii&-ation szfe-
ty policy, which ensures that each variable or individual ar-
ray element has been explicitly assigned a value before it

~ - e - i - d i o m s c - a r r ’ o e ~ = ~ ~ ~ i ~ e ~ - e v

._
We hFve7ieEned- severai safety prope&E%iTEi@r

2

(assign)

(update)

($1

(while)

(for)

P (c) I I A b =+- P I A -b s Q
I A (b) {while b inv 1 do c} Q

P {c} I[i + l/i] I[INIT/~,, , , ,] A el L i 5 e2 + P 4e2 + 1/21 * Q
I[e l / i] A safe,",$(el) A safe,.,(ez) {fori : = el to e2 inv I do e} Q

Figure 2. Proof rules for initialization safety

is used. The safety environment consists of shadow vari-
abies x,,,, that contain the value INIT after the variable 3: has
been assigned a vaiue. Arrays are represented by shadow
mays to capture the status of the individual elements. Fig-
ure 2 shows the rules of the policy. Only statements ac-
cessing assigning a value to a location affect the value of
a shadow variable (cf. the assigiz-, update-, and for-rules).
However, all rules also produce the appropriate safety pred-
icates safe,",'(e) for all immediate subexpressions e of the
statements. Since the safety property defines an expression
to be safe if all corresponding shadow variables have the
v a h e INIT, safetn,,(x [i]) for exmple simply translates to
i,,,, = INIT A (X,,,, { Z]) = INIT.

V C Processing and Annotations As usual in Hoare-
style verification, a verification condition generator (VCG)
Waverses the annotated code and applies Lye rules of the
calculus to produce verification conditions (VCs). These
are then simplified, completed by an axiomatization of the
background theory and passed to an off-the-shelf automat-
et3 tiwxei-n prwer @T?):?f X--VCs =e-proven; the pro-
gram is safe w& safety property. Note that the ATP has no
access to the program internals; hence, all pertinent infor-
mation must be taken From the annotations, which become
part of the VCs. For full functional verification, annotations
&-e thus usually very detailed and, consequently, annotation

s intractable for this case. For safety cer-
tsfication, on the other hand, the Hoare-rules have already
m a e . inJe-m-@.s.gucture ..._ and . the safety predicates are regu-
lax and relatively small, so that the requked annotaG65 %e
a lot shpler. In addition, the targeted safety property and
policy are known at annotation inference time, which elim-
innates the need for any logical reasoning in the style of the
e a r l y inference approaches [24].

____ ._

3 A Worked Example

Figure 3(a) shows a simple example program that initial-
izes two vectors A and B of size N with given but irrelevant
values a, and b (cf. lines 2.1-2.n and 3.1-3.2, resp.) and
then computes and returns the sums s and t of their respec-
tive elements as well as their dot-product d. It is derived
from and representative of the code generated by AUTOFIL-
TER; in particular i t shows the same overdj structure-a se-
ries of variable definitions followed by a loop with variable
uses. AUTOFILTER'S target language is a simple imperative
language with basic control constructs (i.e., if and for) and
numeric scalars and arrays as the only datatypes. Xowever,
the language also supports domain-specific operations on
entire vectors and matrices iike matiix multip2iczti0,. n nr 2s-
signment, aithough these are not used h h5e example showr?
in Figure 3.

Intuitively, the certification of initialization safety re-
quires that the logical annotations entail at each use of a
variable II: that the corresponding shadow variable z,,,, has
t h e - v a l u e - I ~ T . - ~ p ~ c ~ ~ , ~ e need an invariant for the
loop at line 5.1 that ensures this for s, t, and d, as weii as
for the entire arrays A and B.

The first step of the inference algorithm is to scan the
program for relevant variables; for initialization safety all
variables that are used on thefjght-hand side of assignments
(nioie pieciseb, in rwr-positims) are relevant, but here we
wiIl restrict OUT attention to the two array variables A and B,
starting with B which is used in lines 5.3 and 5.4. Both uses
are abstracted into-use (-B-),-~f.-~i~ure-3~b~.-~e. algorithm
then foIlows all control flow paths backwards from the uses
until it encounters either a cycle or a definition for the V x i -

able. Paths that do not end in a definition are discarded and
the remaining paths are traversed node by node, while the

3

const N : = n ;
v a r i , s , t , d;

1.1 constN:=n; conStN:= n; const N : = n; block ;
1.2 v a r i , s , t , d ;
1 3 v a r A [1 : N] , B [l : N] y a r A [l : N] , B [l : N] q a r A [l : N I , B [l : N I ; V a r A [l : N] , B [l : N] ;
2.1 A l l] :=ai; A [I] : = a1 ; A [1] :=ai; . def(A [l : N]) ; A [1] : = a i ;

v a r i, s , t , d; var i , s , t , d;

.
2.n A [n l :=a,; A [n] :=a,; A [n] :=a,; A [n J :=a,;

3.1 for i : =1 to N do for i : =1 to N
inv V j E { 1 i - 11 B,n!c[j] = INIT

post V j E { 1 : n} .A,“,$ [j] = INIT

for i : =1 to N
inv v j E (1 : n> &,[j] = INIT

def(B [1 :N]) ; barrier;

do A VJ € (1 ..I - l}.B,n,t[J] =INIT do
3 2 B [i l : = b ; B [i] := b; BET] : = b ;

post ‘dj E { 1 : N}. J~,.,~[J] = INIT pos t V j E { 1 : n} .A,o,t[~] = INIT

A V j ~ (1 :IV).B,,,,[J~=INIT
s:=c--; s-:-= 0-. .Hock ‘ S-?=&, 4.1 sT=o-;

4 2 t : = O ; t:=O; t : = O ; t : = O ;
4.3 d:=O; d:=O; d:=O; d:=O;”

-___- 1 1 -

5.1 f o r i : =I t o N d o for i: =1 t o N d o f o r i : =1 t o N f o r i : = l t o N d o f o r i : = I t o N
inv V j E { 1 : N} . B,,,, [J] = INIT inv ‘v’j E { 1 : n} .A,&] = INIT

A s,,,~ = t,,,,! = d.,,, = INIT do
do A v j € {l:N}.B,ntt[j] =INIT

5 2 S: =s+A [i] ; t : = t i A [i] ; s : =s+A [i] ; use(A) ; s : = s + A [i] ;
5.3 r . : = t + B [i l ; use(3) ; t : = t + B [i] ; block ; t : = t + B [i] ;
5.4 d : =d+A [i] *B [i] ; use(B) ; d : = d + A [i l *B [i l ; use@) ; d : = d + A [i l * B [i l ;

6 re turns , t ,d ; return s , t , d; return s , t , d; block ; return s , t , d;

post = t,,,< = &,$ = INIT

(4 (3) (c> (4 (e)
Figure 3. (a) Original program (b) Abstraction for B (e) Annotations for B (d) Abstraction for A (using
block-patterns) (e) Fully annotated program.

annotations are added as required.
Here, the only assignment to B is in line 3.2; howev-

er, this is not the entire definition-the algorit!m needs
to identify the fer-loop (lines 3.1-3.2) as the definition for
the entire may B and abstract it into the definition node
def(B [1 : N])- The path search then starts at line 5.4 and
goes straight back up to the for-loop at line 5.1, where it
splits. One branch comes in from the bottom of the loop-
body but this immediately leads to a cycle and is therefore
discarded. The other branch continues through lines 4.i-
4.3 and terminates at the definition node at line 3.1. Since
all branches have been exhausted, there is only one path
along which annotations need to be added. The annotation
process starts with the use and proceeds towards the def-
in;t;on krmimting the path. The fo
is fully determined by the known syntactlc s
definition and by the safety property. Since the definition
is .a.loop,_in-this-casq-it needs_aloo~~ariant,_as_JareVas .

a postcondition. Since the safety property is initialization
safety, both invariant and postcondition need to formalize
that the shadow variable B,,,, corresponding to the current
array variable B records the value INIT for the already ini-

-- - --___ ____ _ _ _ _ _

tialized entries. Note that the different upper bounds for
the quantifiers can both be constructed from the loop. The
postcondition is then puLIed along the remaining path, i.e.,
added to dl nodes that require it. Every node needs to be in-
spected, but in this case only the for-loop at line 5.1 requires
an invariant. Figure 3(c) shows the result of this pass.

The next pass (cf. Figure 3(d)) adds the annotations for
A. As before, its two uses in lines 5.2 and 5.4 are abstract-
ed. A is initidized using a differeni idiom-a sequence of
assignments, cf. lines 2.1-2.n-but this is again coIIapsed
into a def -node; here, the initialized range is taken from the
first and last assignment, respectively. The program is then
collapsed further by the introduction of barrier- and block-
nodes. These represent that do not need to be explored
because they cannot c relevant definition
stantially reducing the number of paths. However, the bar-
rier-mdes must be re-expanded during pa& traversal -
phase because they require annotations (cf. line 3.1) while
block-nodes remain opaque. Except for this special han-
dling, the algorithm proceeds as before, and Figure 3(e)
shows the fully annotated example program.

. - __ - - __ __ __. -

4

4 Inference Aigorithm gIobal SP: Property;
P :AST;

prov a m g r o g (1 =

The previous section shows that the set of idiomatic cod- pa t t e rns : list Pat te rn ;
var : Id;
uses : list Position;
use : Position:

ing patterns which are used is the key knowledge that drives
the annotation construction. However, this is not a gener-
a1 program understanding problem: we are not concerned - cfg : CFG;
with identifying general-purpose coding patterns and clich-
es E211 but only the relevant definitions and uses. These are
specific to the given safety property, but the algorithm re-
mains the same for each policy. In the case of iniriaiization
safety, the definitions are the different initialization blocks
as shown in Figure 1, while the uses are statements which
read a variable (Le., contain an mar).

The aim of the inference algorithm is to “get information
from definitions to the uses”, Le., to annotate the program
in such a way that the VCG wili have the necessary infor-
mation to show the program safe as it works its way back
through the program. For each variable, the algorithm first
computes each control flow path back from a use to a defini-
tion and then traverses the paths, annotating the definitions
and all intern-ediate nodes t h t otherwise constitute barri_ers
to the information flow. The following subsections describe
the various concepts and components.

As in the certifiable code generation approach, we still
split the certification problem into two phases-first, we
infer the logical annotations required to prove the code
safe: second, we apply the standard machinery (i.e., VCG
and ATP) to prove that the code complies with the anno-
tations. As consequence of splitting annotation inference
from checking annotation compliance we do not need to
carry out any logical analysis during annotation. Moreover,
the inference algorithm remains an untrusted component in
the sense of the PCC model.

4.1 Top-level Algorithm Structure

The top-level structure of the algorithm (cf. Figure 4)
closely follows the outline above. The safety property SP
and the abstract syntax tree of the program P are used by all
functions-and-given asgIobal-variablerFhe overall result is
returned by side-effects on P. annqrog first accesses the
property-specific patterns for definitions, uses and barriers.
It then further redxes the inference efforts by limiting the
analysis to certain program hot spots which are determined
by the so-called “hot variables” described in the next sec-
tion.

4.2 Hot Variable Identification

Proving a program safe requires annotations at the points
where the VCG needs essential information about the def-
inition of certain key variables. To see why some uses of
variables are more critical than others, consider how a VCG

path : Path
begin

pa t t e rns := y e t q a t t e r n s (SP) ;
foreach (var, uses) in compute-hotvars (l do

c fy . = compute-cfg (pa t t e rns , varl ;
foreach use in uses do

foreachpathin computegaths (c fg , use) do
a m g a t h (path) ;

end

Figure 4. Top-level Algorithm

processes a program to generate VCs. The VCG works back
through the program, gradually constructing a WPC and
generating safety obligations whenever required by the use
of a variable. The safety obligations wiIl nltimately be dis-
charged in the context of safety substitutions that accumu-
late earlier in the program. If something is missing from that
context, it must be supplemented by an annotation. There-
fore, to figure out which annotations are required, we need
to know at which points variables are used with “missing“
information: we need a notion o f availability.

Informally, we say that a variable is available at some
point in a program (wrt. a safety property) if it is within
reach of its definition. For example, immediately after a
scalar assigr,ment, the assigned variable is available but it
becomes unavailable if there is an intervening loop. We say
that a variable use is hot if it unavailable, and call a variable
a “hot variable” (hotvar, for short) if at least one of its uses
is hot.

The algorithm can then pass farough the prcgram before
the annotation phase, and collect hotvars and uses, since
these are the only variables for which it needs to construct
annotations. Limiting the analysis in this way i s a crucial
optimization-to cut dowrrthe-number- of graphs to be-con-
structed (cf. Section 4.4).

The function computehotvars maintains a list of
available vaiiables, initially set to empty, and scans forward
through the program, deciding for ea
given property) how it afYects the
ables. For example, we assume that scalar assignments
add to the available variables, but array assignments do not:
because arrays are typically accessed indirectly using loops
and v&abz?ndices, all u s e G h m e treate or
each statement that matches the policy-specgc use pattern,
the algorithm also checks if theused variable is available; if
it is not, that use is tagged as being hot.

Note that the hotvars are computed before the pattern

Figure 5. Pattern Grammar

analysis, and in order to minimize the work in that and sub-
sequent stages. The hot variables are therefore approximat-
ed conservatively, Le., we err on the side of designating uses
(and coula even treat dl uses) as hot.

4.3 Patterns and Pattern Matching

The algorithm uses patterns to capture the idiomatic code
structures and pattern matching to find the corresponding
code locations. Each pattern specifies a class of Eragments
that are treated similarly by the algorithm, e.g., because they
require a similar annotation.

The pattern language is essentially a tree-based regular
expression language similar to =-based languages like
ma th [3]; Figure 5 shows its grammar. The language sup-
ports matching of tree literals f (2‘1, . . . P,) (if the signature
C is given by the programming language to be analyzed, we
will also use its concrete syntax to formulate example pat-
terns), wildcards (-) and the usual regular operators for op-
tional (?), list (*) and non-empty list (+) patterns, as well as
alternation (I I) and concatenation (;) operators. It also sup-
ports matching at arbitrary subterm positions (i.e., PI E P2
matches all terms that match P2 and have at last one subterm
that matches PI; similarly, PI @ P2 matches all terms that
match P2 and have no subterm that matches PI). Matching
arbitrarily nested terms of the form f (- . . f(z) . . a)) is not
required for our purposes.

However, the main difference to XPath and similar lan-
guages is that we use meta-variable patterns 2 to introduce
a ! ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ - o f c o ~ ~ e ~ dependency -Like-a-wildcard; an -
uninstantiated meta-variable matches any term but, unlike a
wildcard, it becomes instantiated with the matched term and
thus subsequently only in other instances of the instantiat-
ed pattern. For example, the pattern (- [-I : = -)i matches
theentire statementlistA[lI :=1;A[21 :=2;B[11 :=1
while-the pattern (zL1 : = -)i matches, after the instanti-
ation of x with A on the first statement, only the follow-
ing second assignment to A but not the final assignment to
B. Further context-dependencies are introduced’by multiplG
occurrences of the same meta-variable in a pattern. Hence,
the pattern for 2 : = - to - inv - do -[z, XI : = - can be used
to identify loops that access only the diagonal elements of
any matrix.

-_ - ... - . - . . ._.

The match procedure traverses terms first top-down and
then left-to-right over the direct subterms. Meta-variables
are instantiated eagerly (i.e., as close to the root as possi-
ble) but instantiations are undone if the enclosing pattern
fails later on. List patterns follow the usual “longest match”
strategy used in almost aU. traditional regular expression
matchers. The match procedure returns as result a set of
(Position x IV x Substitution)-triples where the first two ar-
guments are the root position and length of the match of the
top-level pattern.

4.4 Abstracted Control Flow Graphs

The algorithm follows the controi flow paths from vari-
able use nodes backwards to all corresponding definitions
and annotates the statements along these paths as required
(see the next two sections for details). However, it does not
traverse the usual control flow graphs (CFGs) but abstracted
versions, in which entire code fragments matching specific
patterns are collapsed into individual nodes. Since the pat-
terns can depend m the variables, separate abstracted CFGs
must be constructed for each given hotvar. The construc-
tion is based on a straightforward syntax-directed algorithm
as for example described in [14].l The only variation is
that the algorithm first matches the program against the dif-
ferent patterns, using the algorithm described in the section
above, and in the case of a match constructs a single node of
the class corresponding to the successful pattern, rather than
using the standard construction and recursively descending
into the statements subterms.

In addition to the syntactic classes representing the dif-
ferent statement types of the programming language, the ab-
stracted CFG can thus contain nodes of several different pat-
tern classes. The algorithm requires use- and def-nodes and
uses barrier-, barrier-block- and block-nodes as optimiza-
tions. A11 of &ese represent code chunks that the algorithm
regards as opaque (to different degrees) because they con-
tain no definition for the given variable. They can therefore
be treated as atomic nodes for the purpose of path search,
whieh dza&aUy- reduas-the number of paths-thatneed be
explored. barrier-nodes represent any statements that re-
quire annotations, i.e., principally loops. They must there-
fore be re-expanded and traversed during the annotation of
the algorithm. In contrast, block-nodes are completely irrel-
evant to the howar because they neither require annotations
(Le., contain no bar&;) noi coiii&cie to mx~ota t i~~; . ,~ &e.,
contain no occurrence of the hotvar in an lvar-position).
They can thus also remain atomic during the annotation
@im, ?.e., x e not entered on path traversal. Blocks are typ-

‘Since the generators only produce well-stiuctured proppms, a syntax-
directed graph construction is sufficient. However, if necessary, we could
replace the graph construction algorithm by a more general version that
can handle ill-structured pro,gams.

6

ically loop-free sequences of assignments and (nested) con-
ditionals. barrier-blocks constitute a further optimization
by combining the other two concepts: they are essentially
barriers wrapped into larger blocks. Hence, they must be
re-expanded during annotation, like normal barrier-nodes.
The algorithm must further distinguish between reaching a
(barrier) block from behind and from within. Coming from
behind, it can treat the block opaquely, as described above.
Coming from within (i.e., starting from the initial use), the
algorithm must ignore the block label, and regard the node
as the underlying statement. This means it has to keep track
of the previous Iocation as it navigates along paths.

4.5 Annotation of Paths

For each use of a hotvar, the path computation in the pre-
vious section returns a list of paths to putative definitions:
although they have been identified by successful matches,
there is no way to tell at this stage which, if any, of the def-
initions are relevant. In fact, it may be that several separate
definitions are needed to fu!ly define a variable for a single
use. In a sense, the paths are untrusted and their correct-
ness is established by annotating all barriers between the
uses and definitions. Since this must take control flow into
account, the current annotation is computed as the weakest
precondition of the previous annotation.

Paths are then annotated in two stages. First, unless it has
already been done (during a previous path), the definition at
the end of the path is annotated, and the current annotation
is set to its postcondition (cf. Section 4.6). If the use is
contained withir, the definition then the path does not need
to be continued because the definition will have been fully
annotated “internally”; otherwise, we go on to the rest of
the path.

The path annotation (Figure 6) works back along the path
from a use to 2 definition, computing weakest preconditions
along the way, and annotating loops and barriers as appro-
priate. Both the computation of preconditions and the in-
sertion of annotations are done node by node rather than
statement by statement

At each point, we know the current weakest precondi-
tion, the previous l’ocation, the original use location (Le., the
start of the current path) and the hotvar. The previous loca-
tion is needed to compute the precondition, and the hotvar
and use location are used to prevent duplicate annotations.

it first checks whether the current nocie is visi’oie2 from
the definition. If so, then we are hished since the VCG will
have all the information it needs from this point onwards.
LikewiviSe, if this i S fi5lBst nOdE (Eat is, the one before the
def), then we’re finished annotating. If not, we look to see
if this node has already been annotated.

’A node is visible from another node if it comes after it in a path
through the CFG and there are no barriers between the nodes.

proc amgath(HotVar, Path, PrevLoc, Post, UseLoc) :=
case Path of

[I ->done
Node::NodeList - >
if node-visible (NodeList) or NodeList = 11 then

else
done

LOC := get-node-location(Node);
NextNode : = head (NodeList) ;
NextLoc := get-node-location(NextNode);
if is-amotated(Loc, Post, UseLoc, HotVar) then

else
skip

if node-is-barrier-or-opaque (Node) then
if wi thin (PrevLoc, LOCI then

if node-is-loop (Node) then
if within (NextLoc, Loc) then
ann-loop-node (Node, Post, UseLoc, HotVar)
else
ann-barrier-node (Node, Post, UseLoc, HotVar)

else
skip

else ann-barrier-node (Node, Post, UseLoc, HotVar)
else

if node-is-loop (Node) &en
if within(NextLoc, LOC) then

else

else skip;

ann-loop-node (Node, Post, UseLoc, HotVar)

ann-barrier-node(Node, Post, UseLoc, HotVar)

Pre := nodegrecondition(PrevLoc, Post, Node);
amjath(HotVar, NodeList, LOC, Pre, UseLoc)

Figure 6. Path Annotation Algorithm

If so, we skip to the next node. If not, we distinguish
several cases, depending on whether it’s a loop or a barrier
or an opaque node (blocks and barrier blocks), whether the
previous node is within the current node, and whether the
next node is within the current node. Once we’ve dealt with
a node, the weakest precondition of that node is calculated,
and we move on to the next node.

The WPC of a node is somewhat subtle and depends on
vdie%er 5f not it is a b m i r ~f c%p&q~e, the statement it-
self (for basic blocks), and the previous location. In many
cases the WPC does not change. For those cases where it
does, the new W C needs to be computed by looking at
the statement. We distinguish atomic and compound state-
ments. Compound statements (series, if, for, while) can on-
ly change the WPC if the previous location is after a loop,
in which case WC(P, C) = end(C) =+- P, where P is the
incoming - . . . postcondition, C is the statement, - - and - _ _ end(C) - is .

the end condition for the loop, C. For while b do e, this is
-, b, and for for i I = el to e2 do c, this is i > e2. In other
words, the WPC says “if the loop has terminated then 5‘”.
For atomic statements we compute the weakest precondi-
tion by calIing the VCG and simplifying the result.

-

7

4.6 Annotation of Nodes

The path traversal described above calls the actual anno-
tation routines when it needs to annotate a node. For an-
notation, we distinguish three classes of nodes: definitions,
bamers, and loops @.e., basic nodes which are loops).

The most important (and interesting) class is the defini-
tions. This is really the core of the whole system, and where
the annotation knowledge is represented in the form of an-
;zotatio;z schema, which tzke a match (ideEtifyir?g the pat-
tern and location), and use meta-programming to construct
and insert the annotations.

For example, each initialization block from Figure 1 is
d s n e d by a separate pattern and has a corresponding an-

notation schema. In each case, a final outer postcondition
VI : 1 5 I 5 n.YJ.l 5 J 5 m.X,“*,(I, J) = init (where
X is the matrix) is inserted, while 1@) and l(c) also get an
inner postcondition, as well as inner and outer invariants.

Note that even after a pattern has been successfully
matched, an annotation schema might still fail its precon-
ditions. For example, the binary assignment schema (Fig-
ure l(a)) simply matches against a sequence of assignments,
but the schema further requires that the indices of the first
and last assignments are the low and the high, respectively.

The annotation schemas can handle more complicated
examples than the “pure” definitions directly reflected by
the patterns. A common situation is for a barrier to appear
within a definition. Consider the following simple example:

1 f o r i : = l t o N d o
2 a [i l : = o ;
3 f o r j : = I t o N d o ...

The definition pattern is a single nested initialization, but
the for-loop at (3) means &at an extra postcondition, a,,,l.i]
= i n i t , is needed on (2j co push the iniualizarion through
the body. However, if the for-barrier is before the assign-
ment no extra annotation is needed. In general, the schemas
are able to deal with such cases and maintain the “internal”
flow of infomation within a definition.

5 Experiences

We have implemented the generic inference algorithm in
about 4000 lines of documented Prolog code and instanti-
ated it to certify initialization safety for code generated by
AUTOB AYES and AUTOFILTER. The “declarative content;‘
was surprisingly small: it only required instantiations of the
pattern library but no changes to the algorithm itself.

5.1 AutoFilter

For AUTOFILTER, the definitions are given by the id-
ioms in Figure 1 (both for vectors and matrices), gong with

the direct vectodmatrix assignment operation ::=. This is
captured by the following pattern:

defAF(z) ::= z : =- II z I : =_
I 1 (z [-I : =-)+ II (z L, -1 : =-)+
II for i : =- to - doz[il : =-
II for i :=- to - do

I I fori :=- to - do
f o r j :=- to - dozt i , j l :=-

forj : =_ to - do
if - thenz[i , j l :=-elsez[z,jl :=-

Like all patterns here, this is parametrized over a hotvar
5, so r ~ ~ m ~ o ~ ~ ~ o ~ ~
barrier(z) (see below) is a barrier on a path from a use of
11: to its definition, and so on. Note that i and j are “free”
meta-variables that get instantiated by the actual loop index
variables. The patterns can also contain “junk”, i.e., arbi-
trary code that can be interspersed with the match. This is
easily defined by a junk operator omitted here.

Barriers are defined as for-loops without any occurrence
of the hotvar. Loops with the hotvar are then simply treat-
ed by the normal CFG-routines, i.e., not collapsed. Finally,
blocks are conditionals whose branches are deemed “irrele-
vant”, which means they have no occurrence of a barrier or
hotvar.

barrier@(.) ::= z 6 (for - to - do -)
blockAF(z) ::= if (z 6) - then i r r (z) else irr(s)

II for - to - do irr(z)

where irr(z) = (z 1 1 barrierAF(z)) $ - is an auxiliary
pattern blocking all occurrences of the hotvar or a barrier.
We omit the easy pattern for uses.

5.2 AutoBayes .

AUTOBAYES has sirrdar patterns to AUTOFILTER, but
- does not_ need the : : = -pattern sines it does not generate
matrix operations, nor the assi,pment sequence pattern. it
has two additional language constructs, abort, which ap-
pears in the definition pattern, and while-loops, which can
form additional barriers. Blocks and uses are the same as
for AUTOFILTER.

defAB(i) ::= for i :=- to - doz[il :=-

I1 for i :=- to - do . .
- . __ -_ _fCLTjL E-tO,dOd.Z, 3 I-; 5- . - -

It for i :=- to - do
if - thenabortelsez[i,jl : =-

barrierAg(z) ::= z $ (for - to - do -)
I I 2 $ (while - do -)

8

Spec. I PI /AI N Tgen TATp IAl N Tnf TATp
d s l 235 439 221 - 16 41 494 19 / - 22 46
iss 523 441 271 - 29 52 547 241- 46 49
segm 182 1278 105/ 6 22 628 1584 109/- 54 202

178 1332 114/10 24 903 1643 10815 54 556

rithm to those previously achieved in the cediable code
generation appro&. The first two exaiiples are AUTOFIL-
TER specifications. dsl is taken from the attitude control
system of NASA’s Deep Space One mission [26]. iss
specifies a component in a simulation environment for the
Space Shuttle docking procedure at the International Space
Station. segm describes an image segmentation problem
for planetary nebula images taken by the Hubble Space
Telescope. For this, AUTOBAYES synthesizes two differ-
ent versions of an iterative numerical clustering algorithm.
For each example, the table lists the size of the generated
program, and then, for each approach, the sizes of the gen-
erated resp. inferred annotations, the numbers of generated
and failed safety obligations, resp., as well as the runtimes
and proof times in seconds.

For the two AUTOFILTER examples, both techniques
prove to be very similar. The inferred annotations are slight-
ly larger (by 15-25%) than the generated ones but, due to
simplifications, they induce fewer VCs. For both approach-
es, the programs are certifiable fully automatically: all VCs
are proven by the ATP. For the AUTOBAYES example, the
sitxitior, is more complicated. Here, mnotation generation
has not kept up with ongoing development and the anno-
tations are insufficient to prove the programs safe-even
though they are. With the patterns described above, anno-
tation- inference can, in contrast, c e d e the first progmm
but it too remains too weak for the second program, as a
required code pattern is still missing. In both cases, the in-
ferred annotations are again slightly larger, with fewer VCs
induced.

Since it needs to build and traverse the CFGs, the infer-
ence approach is (substantially) slower than the generation
approach, which only needs to expand templates. Howev-
er, &gjrgroduction.of blpck- _and barrier-nodes cuts down
the size of the CFGs dramatically, and we expect further
speed-up from an optimized implementation. Moreover, the
limiting factors overall are the proof times which are com-
parable (modulo failed VCs) in all cases, indicating that the
inference does not introduce new complexity for the A T .

6 Related Work

dled by a combination of different heuristics like weaken-
ing or strengtherkqg a ~ d loop unrolling, until a fixpoint is
achieved. However, these methods still need an initial an-
notation, and unlike our approach, the loop handling still
induces a search space at inference time. Moreover, the con-
structed annotations are often only candidate invariants and
need to be validated (or refuted) during inference, because
they increase the search space.

Abstract interpretation has been used to infer annotations
in separation logic for pointer programs E171 although the
techniques required there are fairly specialized and elabo-
rate compared to our patterns. The Coverity static analyzer
[11 can be customized by macros that are simple versions of
our patterns.

Finally, generate-and-test methods have been applied to
our problem. Here, the generator phase uses a fixed pat-
tern catalogue to construct candidate annotations while the
test phase tries to validate (or refute) them, using dynamic
or static methods. Daikon [lo] is the best-known dynam-
ic annotation inference tool in this category. Its tester ac-
cepts all candidates that hold without falsification but with
a sufficient degree of support over the test suite. In order
to verify the candidates, Daikon has also been combined
[20] with the ESCIJava static checker [13]. In some cas-
es; ~:TsC~EEiZi&iix && Eis33tSl-ifi E l l - ~ a ? e ~ jxoafs-(wlrt.
the safety policy supported by ESCIJava). In general, how-
ever, dynamic annotation generation techniques remain in-
complete because they rely on a test suite to generate the
candidates and can thus miss annotations on paths that are
not executed often enough (or not at all).
static generate-and-test tool that uses ES
ly refute invalid candidates. Since ESCIJava is a modular
checker, - __ . Houdini has to start with a candidate - set for . __ the --

entire program and then iterate u n a a fixpoint is reached.
This increases the computational effort required, and in or-
der to keep the approach tractable, the pattern catalogue is
deliberately kept small. Hence, Houdini is incomplete, and
acts more as a debugging tool than as a certification tool.

9

7 Conclusions and Future Work

The certification system based on annotation inference
as described here is much more flexible and extensible than
our previous certification architecture [6]. Over time, ex-
tensions and modifications to our code generators had led
to a situation of “entropic decay” where the generated an-
notations had not kept pace with the generated code. The
new inference mechanism was able to automatically certify
the same programs as the original system, as well as some
subsequent extensions. However, as Table 1 shows, the re-
construction is not yet complete, and we continue to extend
the new system. These system extensions require less ef-
fort than before since the patterns and annotation schemas
are expressed declaratively and in one place, in contrast to
the previous decentralized architecture where certification
information is distributed throughout the code generator.

We have implemented several optimizations which cut
down on redundant annotations. This is important since
the same annotations can arise on multiple paths. Further-
more, many computational optimizations could be achieved
by merging several of the phases.

Our approach offers a general framework for augment-
ing code generators with a certification component, and we
have started a project to apply it to Mathworks Real-Time
Workshop [2]. Our techniques could also be adapted to oth-
er annotation languages.

There is a strong interaction between the VCG and the
annotations. It is possible to modify the VCG so that it does
some analysis and requires less annotations. This would,
however, mean that a greater part of the Certification system
must be trusted. Nevertheless, we would like have a “safe-
ty dial” whereby users can trade off trustedness with speed
(which depends, inter alia, on the number of annotations
which must be checked). Funher empirical studies will be
required to determine the most effective balance.

References

untu.. . covgrity . cofn.

www.mathworks.com/products/rtw/

XML Path Language m a t h) Version 1.0, 1999.
www.w3.org/TR/xpath.

D. Abrahams and A. Gurtovoy. C++ Template Metapro-
grmiiLLq- Addism-Yesley, 2005.

E. Denney and B. Fischer. Correctness of source-level safe-
ty policies. In FM’03, LNCS 2805, pp. 894-913. Springer,
2003.

E. Denney and B. Fischer. Certifiable program generation.
In GPCE’OS, U?CS 3676, pp. 17-28. Springer, 2005.

E. Denney, B. Fischer, and J. Schumann. Adding assurance
to automatically generated code. In 8th Inrl. Symp. High-

Assurance Systems Engineering, pp. 297-299. IEEE Press,
2004.

[8] E. Denney, B. Fischer, and J. Schumann. An empirical evalu-
ation of automated theorem provers in software certification.
Zntl. J . ofAI Tools, 15(1):81-107,2006.

[9] N. Dershowitz and Z. Manna. Inference rules for program
annotation. ZCSE-3, pp. 158-167. E E E Press, 1978.

[lo] M. D. Emst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. IEEE TSE, 27(2):1-25: 2001.

[l l] B. Fischer and J. Schumann. AutoBayes: A system for gen-
erating data analysis programs from statistical models. J.
Functioizal Programming, 13(3):483-508,2003.

~ ~ - L h F r i a n r a g ~ ~ ~ ~ v ~
assistant for ESC/Java. In FME’OI, LNCS 2021, pp. 500-
517. Springer, 2001.

1131 C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
PLDI’02, pp. 234-245. ACM Press, 2002.

[141 M.J. Hanold and G. Rothermel. Syntax-directed construc-
tion of program dependence graphs. Technical Report OSU-
CISRC-5/96-TR32, The Ohio State University, 1996.

[15] C. A. R. Hoare. The verifying compiler: A grand challenge
for computing research. JACM, 50(1):63-69,2003.

[161 S. Katz and Z. Manna. Logical analysis of programs. CACM,

[17] 0. Lee, H. Yang, and K. Yi. Automatic Verificition of
19(4):188-206, 1976.

I

Pointer Programs Using Grammar-Based Shape Analysis. In
ESOP’OS, LNCS 3444, pp. 124-240. Springer, 2005.
J. C. Mitchell. Foundations for Programming Languages.
The MIT Press, 1996.
G. C. NecuIa and P. Lee. The design and implementation of
a certifying compiler. In PLD1’98, pp. 333-344. ACM Press,
1998.
J. W. Nimmer and M. D. Ernst. Static verification of dynam-
ically detected invariants: Integrating Daikon and ESC/Java.
Ir! First Workshop on Runtime Verification, Elec. Notes in
27aeoretical Computer Science, 55(2). Elsevier, 200 1.
C. Rich and L. M. Wills. Recognizing a programs’s descrip-
tion: A graph-parsing approach. IEEE Soffwal-e, 7(1):82-89,
1-990.
D. R. Smith. KIDS: A semi-automatic program development
system. IEEE TSE, 16(9):1024-1043,1990.
M. Stickel et al. Deductive composition of astronomical softL
ware from subroutine libraries. In CUE-12, LNAI 814, pp.
341-355. Springer, 1994.
2. wegbrei$. ’iz- IIJG ayllulcxs -_._LL--: of ~ G O P piedicates. CACM,
17(2):102-112, 1974.
M. Whalen, J. Schumann, and B. Fischer. Synthesizing cer-
tified code. In FNE’02, J ! N C S ~ ~ ~ I , pp. 431450: Springer;
2002.
J. Whittle and J. Schumann. Automating the implementa-
tion of Kalman filter algorithms. ACM Trans. Mathematical
Sojhare, 30(4):434--453,2004.

